Approches théoriques en codage vidéo robuste multi-terminal

Olivier Crave

IRISA/TELECOM ParisTech

15 décembre 2008

Directrices de thèse : Christine Guillemot Béatrice Pesquet-Popescu

1 Cadre de travail

- Codage vidéo robuste
- Codage par descriptions multiples
- 2 Codage vidéo par descriptions multiples protégé par un flux auxiliaire
 - Schémas MDC temporel
 - MDC avec flux auxiliaire
- 3 Codage par descriptions multiples avec information adjacente
 - Principe
 - MDSQ avec information adjacente commune
 - Décodage croisé de descriptions multiples avec information adjacente
- 4 Codage vidéo distribué robuste
- 5 Conclusion et perspectives

1 Cadre de travail

- Codage vidéo robuste
- Codage par descriptions multiples
- 2 Codage vidéo par descriptions multiples protégé par un flux auxiliaire
 - Schémas MDC temporel
 - MDC avec flux auxiliaire

3 Codage par descriptions multiples avec information adjacente

- Principe
- MDSQ avec information adjacente commune
- Décodage croisé de descriptions multiples avec information adjacente
- 4 Codage vidéo distribué robuste
- 5 Conclusion et perspectives

Communication robuste sur des réseaux bruités tels que :

- Internet
- Réseaux pair-à-pair
- Réseaux ad hoc
- Réseaux de capteurs
- **•** ...

Protocoles UDP et RTP pour une transmission vidéo ne garantissent pas une robustesse suffisante sur des canaux sensibles aux erreurs

• Techniques traditionnelles :

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour
 - Effet de cliff

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour
 - Effet de cliff
- Techniques alternatives :

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour
 - Effet de cliff
- Techniques alternatives :
 - Entrelacement des paquets

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour
 - Effet de cliff
- Techniques alternatives :
 - Entrelacement des paquets
 - + Diminuer l'effet des erreurs en rafale (burst)

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour
 - Effet de cliff
- Techniques alternatives :
 - Entrelacement des paquets
 - + Diminuer l'effet des erreurs en rafale (burst)
 - Délai systématique

- Techniques traditionnelles :
 - Automatic Repeat reQuest (ARQ) : Retransmission des trames perdues
 - + Garantie de recevoir l'information
 - Délai dû à la retransmission des paquets perdus
 - Codage correcteur d'erreurs (FEC) : Envoi d'une information redondante
 - + Pas de voie de retour
 - Effet de cliff
- Techniques alternatives :
 - Entrelacement des paquets
 - + Diminuer l'effet des erreurs en rafale (burst)
 - Délai systématique
 - Codage par descriptions multiples (MDC)

Codage par descriptions multiples

Le MDC est un codage conjoint source-canal :

- Décomposition de la source en plusieurs descriptions corrélées
- Envoi des descriptions sur plusieurs canaux

La qualité reste acceptable avec seulement un sous-ensemble de descriptions reçues et s'améliore lorsque le nombre de descriptions reçues augmente.

Techniques MDC :

- Sous-échantillonnage temporel ou spatial (information splitting)
- Transformations redondantes (MDCT)
- Quantification scalaire à descriptions multiples (MDSQ)

...

Propriétés :

- Introduction de redondance au niveau source pour combattre les erreurs de transmission
- Efficacité sur les réseaux avec beaucoup de pertes (pas d'effet de cliff)

1 Cadre de travail

- Codage vidéo robuste
- Codage par descriptions multiples
- 2 Codage vidéo par descriptions multiples protégé par un flux auxiliaire
 - Schémas MDC temporel
 - MDC avec flux auxiliaire
- 3 Codage par descriptions multiples avec information adjacente
 - Principe
 - MDSQ avec information adjacente commune
 - Décodage croisé de descriptions multiples avec information adjacente
- 4 Codage vidéo distribué robuste
- 5 Conclusion et perspectives

Deux architectures de codage vidéo MDC reposant sur un filtrage temporel compensé en mouvement (MCTF) :

- Codage par descriptions multiples dans le domaine temporel au niveau trame (MDCT-T)
- Codage par descriptions multiples dans le domaine temporel au niveau GOP (MDCT-G)

Description 1

Principe :

Séparation des trames paires et impaires

Description 1

Description 2

Principe :

- Séparation des trames paires et impaires
- MCTF de type Haar 3-bandes

Principe :

- Séparation des trames paires et impaires
- MCTF de type Haar 3-bandes
- Deux niveaux de décomposition temporelle

Propriétés :

Redondance due à la sous-optimalité du codage

Propriétés :

- Redondance due à la sous-optimalité du codage
- Aux décodeurs latéraux, distance temporelle entre les trames reçues est de 1

Propriétés :

- Redondance due à la sous-optimalité du codage
- Aux décodeurs latéraux, distance temporelle entre les trames reçues est de 1

Principe :

 Séparation des trames en GOP (taille dépend du facteur de sous-échantillonnage)

Principe :

- Séparation des trames en GOP (taille dépend du facteur de sous-échantillonnage)
- MCTF de type Haar 3-bandes (deux niveaux de décomposition temporelle)

Propriétés :

 Redondance due à la sous-optimalité du codage au deuxième niveau de décomposition

Propriétés :

- Redondance due à la sous-optimalité du codage au deuxième niveau de décomposition
- Premier niveau de décomposition sur des trames consécutives

Propriétés :

- Redondance due à la sous-optimalité du codage au deuxième niveau de décomposition
- Premier niveau de décomposition sur des trames consécutives
 - ↔ Bonne performance au décodeur central

MDCT-T 3-bandes vs MDCT-G 3-bandes

Central : MDCT-G 3-bandes > MDCT-T 3-bandes
Latéral : MDCT-G 3-bandes < MDCT-T 3-bandes

Deux schémas MDC équilibrés

Conclusion schémas MDC temporel

- Deux schémas MDC équilibrés
- Si une description est perdue, la moitié des trames sont perdues

Conclusion schémas MDC temporel

- Deux schémas MDC équilibrés
- Si une description est perdue, la moitié des trames sont perdues
 - ↔ Variation importante de la qualité (*Flickering*)

MDCT-G Latéral 1 / PSNR = 34.2 dB, bitrate = 500 kbs

Conclusion schémas MDC temporel

- Deux schémas MDC équilibrés
- Si une description est perdue, la moitié des trames sont perdues
 - ↔ Variation importante de la qualité (*Flickering*)

MDCT-G Latéral 1 / PSNR = 34.2 dB, bitrate = 500 kbs

 \hookrightarrow Codage en Wyner-Ziv (WZ) des trames manquantes
Codage de source distribué sans perte

Soit $\{(X_i, Y_i)\}, i = 1, ..., \infty$ une séquence de paires de variables aléatoires discrètes corrélées

Théorème de Shannon :

 $R_X + R_Y \ge H(X, Y)$

Soit $\{(X_i, Y_i)\}, i = 1, ..., \infty$ une séquence de paires de variables aléatoires discrètes corrélées

Théorème de Slepian-Wolf (SW) :

$$R_X + R_Y \ge H(X, Y),$$

 $R_X \ge H(X|Y),$ $R_Y \ge H(Y|X)$

[Slepian, 1973]

Soit $\{(X_i, Y_i)\}, i = 1, ..., \infty$ une séquence de variables aléatoires discrètes corrélées (X, Y)

Le débit minimum pour représenter X est :

 $R_X \geq H(X|Y)$

Codage de Wyner-Ziv (WZ) avec pertes

Codage de source avec information adjacente

Codage de source avec information adjacente au décodeur seulement

Pour des sources gaussiennes sans mémoire et une distorsion MSE,

$$R_{X|Y}^{WZ}(D_X) = R_{X|Y}(D_X)$$

[Wyner, 1976]

Utilisation du codage WZ sous forme de mécanisme FEC :

 Transmission analogique améliorée par une information numérique codée en WZ [Shamai, 1998]

Utilisation du codage WZ sous forme de mécanisme FEC :

- Transmission analogique améliorée par une information numérique codée en WZ [Shamai, 1998]
- Dans le domaine numérique [Rane, 2004] [Wang, 2004] [Sehgal, 2004]

Utilisation du codage WZ sous forme de mécanisme FEC :

- Transmission analogique améliorée par une information numérique codée en WZ [Shamai, 1998]
- Dans le domaine numérique [Rane, 2004] [Wang, 2004] [Sehgal, 2004]

Séquence vidéo codée conventionnellement (MPEG-X, H.26X),

Utilisation du codage WZ sous forme de mécanisme FEC :

- Transmission analogique améliorée par une information numérique codée en WZ [Shamai, 1998]
- Dans le domaine numérique [Rane, 2004] [Wang, 2004] [Sehgal, 2004]

- Séquence vidéo codée conventionnellement (MPEG-X, H.26X),
- ... et en parallèle codée en WZ (quantification grossière)

Utilisation du codage WZ sous forme de mécanisme FEC :

- Transmission analogique améliorée par une information numérique codée en WZ [Shamai, 1998]
- Dans le domaine numérique [Rane, 2004] [Wang, 2004] [Sehgal, 2004]

- Séquence vidéo codée conventionnellement (MPEG-X, H.26X),
- ... et en parallèle codée en WZ (quantification grossière)
- Après masquage d'erreurs, substitution par une version grossière mais correcte

- Schémas MDC robuste :
 - Erreur de propagation prise en charge par MDC
 - Flux auxiliaire codé en WZ
 - $\ \, \hookrightarrow \ \ \, Qualité \ \ aux \ \ décodeurs \ \ latéraux \ \ contrôlée \ \ par \ \ le \ \ taux \ \ de \ \ redondance \ WZ$
- Redondance flexible :
 - si présence d'une voie de retour, flux WZ envoyé à la demande (ARQ)
 - sinon, envoi systématique (FEC)

MDCD-T 3-bandes

• Codage WZ des trames manquantes dans chaque description

MDCD-T 3-bandes

Codage WZ des trames manquantes dans chaque description

 \hookrightarrow Chaque description contient une information sur chaque trame de la séquence

MDCD-G 3-bandes

Codage WZ des trames manquantes dans chaque description

Schéma MDC dans le domaine temporel

Architecture de l'encodeur

Architecture du décodeur latéral

- Comparaison entre le schéma MDCD-G 3-bandes et le schéma MDC 3-bandes [Tillier, 2004]
- Envoi systématique des données WZ
- 4 niveaux de quantification pour le débit WZ : Q_1 , Q_2 , Q_3 , Q_4

Foreman, QCIF, 15 Hz

Décodeur central

Décodeurs latéraux

Foreman, QCIF, 15 Hz

Décodeur central

Décodeurs latéraux

Codage systématique avec pertes dans le domaine pixel

Foreman, QCIF, 15 Hz à 307 kbs

Evolution du PSNR entre la 50ème et la 100ème trame

Réduction des variations de PSNR aux décodeurs latéraux

25

Présence d'un canal de retour (ARQ)

- Présence d'un canal de retour (ARQ)
 - + Information WZ seulement transmise en cas de perte

- Présence d'un canal de retour (ARQ)
 - + Information WZ seulement transmise en cas de perte
- Pas de voie de retour (FEC)

- Présence d'un canal de retour (ARQ)
 - + Information WZ seulement transmise en cas de perte
- Pas de voie de retour (FEC)
 - + Amélioration des performances latérales

- Présence d'un canal de retour (ARQ)
 - + Information WZ seulement transmise en cas de perte
- Pas de voie de retour (FEC)
 - + Amélioration des performances latérales
 - Redondance liée à la corrélation avec l'IA

- Présence d'un canal de retour (ARQ)
 - + Information WZ seulement transmise en cas de perte
- Pas de voie de retour (FEC)
 - + Amélioration des performances latérales
 - Redondance liée à la corrélation avec l'IA
 - Redondance non exploitée au décodeur central

- Présence d'un canal de retour (ARQ)
 - + Information WZ seulement transmise en cas de perte
- Pas de voie de retour (FEC)
 - + Amélioration des performances latérales
 - Redondance liée à la corrélation avec l'IA
 - Redondance non exploitée au décodeur central

 $\ \, \hookrightarrow \ \, \text{Solution pour réduire cette redondance}$

Principe :

Schéma de base identique à MDCT-G 3-bandes

Principe :

- Schéma de base identique à MDCT-G 3-bandes
- MCTF sur les trames WZ (Un seul niveau de décomposition temporelle)

Principe :

- Schéma de base identique à MDCT-G 3-bandes
- MCTF sur les trames WZ (Un seul niveau de décomposition temporelle)
- Seules les sous-bandes BF sont codées en WZ

Principe :

- Schéma de base identique à MDCT-G 3-bandes
- MCTF sur les trames WZ (Un seul niveau de décomposition temporelle)
- Seules les sous-bandes BF sont codées en WZ
- Aux décodeurs latéraux, utilisation des sous-bandes HF de l'information adjacente

Propriétés :

Réduction du débit WZ

Propriétés :

- Réduction du débit WZ
 - \hookrightarrow Amélioration des performances au décodeur central

Foreman, QCIF, 15 Hz

Décodeur central

Décodeurs latéraux

Foreman, QCIF, 15 Hz

Décodeur central

Décodeurs latéraux

Schémas MDC équilibrés
- Schémas MDC équilibrés
- Système de réduction de l'erreur de propagation pouvant être utilisé comme une alternative à ARQ où FEC

- Schémas MDC équilibrés
- Système de réduction de l'erreur de propagation pouvant être utilisé comme une alternative à ARQ où FEC
- Information WZ inutilisée sans la présence d'erreurs
 - $\, \hookrightarrow \,$ Codage par descriptions multiples avec information adjacente

- Schémas MDC équilibrés
- Système de réduction de l'erreur de propagation pouvant être utilisé comme une alternative à ARQ où FEC
- Information WZ inutilisée sans la présence d'erreurs
 - $\, \hookrightarrow \,$ Codage par descriptions multiples avec information adjacente

1 Cadre de travail

- Codage vidéo robuste
- Codage par descriptions multiples

2 Codage vidéo par descriptions multiples protégé par un flux auxiliaire
 Schémas MDC temporel

MDC avec flux auxiliaire

3 Codage par descriptions multiples avec information adjacente

- Principe
- MDSQ avec information adjacente commune
- Décodage croisé de descriptions multiples avec information adjacente
- 4 Codage vidéo distribué robuste
- 5 Conclusion et perspectives

Codage par descriptions multiples avec IA

 MDC avec information adjacente repose sur des principes de codage MD et SW

Codage par descriptions multiples avec IA

MDC avec information adjacente repose sur des principes de codage MD et SW $\,$

Codage par descriptions multiples avec IA

MDC avec information adjacente repose sur des principes de codage MD et SW

 Dans le cas gaussien, la fonction débit-distorsion est la même que l'encodeur ait accès ou non à l'IA [Diggavi, 2004]

MDSQ avec information adjacente

Soient X et Y deux sources gaussiennes sans mémoire corrélées où Y = X + U. U est un bruit gaussien de moyenne nulle et de variance σ_U^2 .

Deux codes de canal :

- Turbo codes
- Codes LDPC

MDSQ avec information adjacente

Soient X et Y deux sources gaussiennes sans mémoire corrélées où Y = X + U. U est un bruit gaussien de moyenne nulle et de variance σ_U^2 .

Deux codes de canal :

- Turbo codes
- Codes LDPC

Quantification scalaire à descriptions multiples (MDSQ)

Exemple de MDSQ avec des cellules entrelacées

Principe de la MDSQ [Vaishampayan, 1993] :

- Descriptions obtenues par une assignation d'index
- Nombre de diagonales détermine le taux de redondance

$$X \longrightarrow \begin{array}{c} \text{Quantification} & \hat{X} & \text{Assignation} \\ & d'index & J \\ & \text{Système de MDSQ} \end{array} \xrightarrow{I}$$

Assignation d'index

Les résultats ont été obtenus pour trois matrices d'assignation d'index construites à partir de tables d'index emboîtés [Guionnet, 2001]

Matrices d'assignation d'index pour 32 niveaux de quantification sur le dictionnaire central, avec (a) 1 diagonale, (b) 3 diagonales, (c) 5 diagonales.

Quantification inverse avec information adjacente optimale en moyenne quadratique, où le bruit U a une distribution gaussienne de moyenne nulle et de variance σ_U^2 :

$$\hat{x}_{opt} = E[x|x \in \bigcup_{k=1}^{K} [z_i^k, z_{i+1}^k), y]$$

où K, le nombre d'intervalles de quantification, dépend du nombre de descriptions reçues.

$$\hat{x}_{opt} = y + \frac{\frac{\sigma_U \sqrt{2}}{\sqrt{\pi}} \sum_{k=1}^{K} \left(e^{-b^2} - e^{-a^2} \right)}{\sum_{k=1}^{K} \left(\operatorname{erf}(a) - \operatorname{erf}(b) \right)} \quad \begin{array}{c} a &= \frac{z_{i+1}^k - y}{\sigma_U \sqrt{2}} \\ o\hat{u} \\ b &= \frac{z_i^k - y}{\sigma_U \sqrt{2}} \end{array}$$

Limite théorique de Slepian-Wolf

En décodant séparément les descriptions, la limite théorique est définie par :

 $R_X \geq H(I|Y) + H(J|Y)$

 Corrélation entre Y et I, J ne dépend pas seulement du CSNR mais également de d En décodant séparément les descriptions, la limite théorique est définie par :

 $R_X \geq H(I|Y) + H(J|Y)$

Corrélation entre Y et I, J ne dépend pas seulement du CSNR mais également de d

 \hookrightarrow Impact du CSNR diminue lorsque *d* augmente

En décodant séparément les descriptions, la limite théorique est définie par :

 $R_X \geq H(I|Y) + H(J|Y)$

- Corrélation entre Y et I, J ne dépend pas seulement du CSNR mais également de d
 - \hookrightarrow Impact du CSNR diminue lorsque *d* augmente
 - ↔ Introduire de la redondance pour un coût nul

100 séquences de 1584 symboles

 Comportement des débits réels identique à celui des limites théoriques

100 séquences de 1584 symboles

- Comportement des débits réels identique à celui des limites théoriques
- Augmentation du SNR aux décodeurs latéraux avec IA

100 séquences de 1584 symboles

- Comportement des débits réels identique à celui des limites théoriques
- Augmentation du SNR aux décodeurs latéraux avec IA
- Quantificateur de LM construit à partir de la distribution de X

100 séquences de 1584 symboles

- Augmentation du SNR aux décodeurs latéraux avec IA
- Quantificateur de LM construit à partir de la distribution de X
 ↔ Moins bonne performance à faible CSNR

37

Décodage croisé de descriptions multiples avec IA

Descriptions décodées séparément

Décodage croisé de descriptions multiples avec IA

 Exploitation de la corrélation entre les descriptions au décodeur central

Technique de décodage itérative similaire à celle utilisée en décodage turbo

Matrice d'assignation d'index d = 2

On a :

• P(i = 1 | j = 1) = 1/3

Technique de décodage itérative similaire à celle utilisée en décodage turbo

Matrice d'assignation d'index d = 2

On a :

Technique de décodage itérative similaire à celle utilisée en décodage turbo

Matrice d'assignation d'index d = 2

On a :

Technique de décodage itérative similaire à celle utilisée en décodage turbo

Matrice d'assignation d'index d = 2

On a :

$$P(i = 1 | j = 1) = 1/3$$

$$P(i = 1 | j = 2) = 1/4$$

$$P(i = 1 | j = 3) = 1/5$$
...

Technique de décodage itérative similaire à celle utilisée en décodage turbo

Matrice d'assignation d'index d = 2

On a :

- P(i = 1 | j = 1) = 1/3
 P(i = 1 | j = 2) = 1/4
- P(i = 1 | j = 3) = 1/5

• • • •

↔ Calcul d'une estimation de la description I à partir de la description J et vice versa

Multiplication de l'information extrinsèque L^{out,(1)} à la sortie du décodeur de *i* avec la distribution de probabilité conditionnelle P(j|i)

■ Multiplication de l'information extrinsèque L^{out,(1)} à la sortie du décodeur de *i* avec la distribution de probabilité conditionnelle P(j|i)
 ↔ Information *a priori* pour le décodage de *j*

- Multiplication de l'information extrinsèque L^{out,(1)} à la sortie du décodeur de *i* avec la distribution de probabilité conditionnelle P(j|i)
 ↔ Information *a priori* pour le décodage de *j*
- Entrelacement pour décorreler les erreurs d'estimation des descriptions

Comparaison des débits obtenus avec et sans décodage croisé pour d = 0

Résultats décodage croisé

Comparaison des débits obtenus avec et sans décodage croisé pour d=1

↔ Diminution de la réduction du débit lorsque le CSNR augmente

Comparaison des débits obtenus avec et sans décodage croisé pour d = 2

Résultats décodage croisé

 Comparaison des performances débit-distorsion des schémas SDC et MDC pour un CSNR=10 dB

Chaque point sur une courbe correspond à un nombre différent de plans de bits parfaitement décodés.

1 Cadre de travail

- Codage vidéo robuste
- Codage par descriptions multiples
- 2 Codage vidéo par descriptions multiples protégé par un flux auxiliaire
 - Schémas MDC temporel
 - MDC avec flux auxiliaire

3 Codage par descriptions multiples avec information adjacente

- Principe
- MDSQ avec information adjacente commune
- Décodage croisé de descriptions multiples avec information adjacente

4 Codage vidéo distribué robuste

5 Conclusion et perspectives

Codage vidéo distribué robuste

MDSQ avec information adjacente

Encodeur

Décodeur central

Décodeur latéral 1

Décodeur latéral 1

Décodeur latéral 2

Descriptions équilibrées contenant des trames clé et des trames WZ

Reconstruction

Quantification inverse optimale où le bruit U a une distribution laplacienne ayant comme pdf p_U :

$$\hat{x}_{opt} = E[x|x \in \bigcup_{k=1}^{K} [z_i^d, z_{i+1}^k), y] = \frac{\sum_{k=1}^{K} g(k)}{\sum_{k=1}^{K} h(k)}$$

11

où K, le nombre d'intervalles de quantification, dépend du nombre de descriptions reçues,

$$g(k) = \begin{cases} \left(\frac{1}{\alpha} + z_i^k\right) e^{\alpha(y - z_i^k)} - \left(\frac{1}{\alpha} + z_{i+1}^k\right) e^{\alpha(y - z_{i+1}^k)} & \text{si } y < z_i^k, \\ \left(\frac{1}{\alpha} - z_i^k\right) e^{-\alpha(y - z_i^k)} - \left(\frac{1}{\alpha} + z_{i+1}^k\right) e^{-\alpha(z_{i+1}^k - y)} + 2y & \text{si } y \in [z_i^k, z_{i+1}^k), \\ \left(\frac{1}{\alpha} - z_i^k\right) e^{\alpha(z_i^k - y)} - \left(\frac{1}{\alpha} - z_{i+1}^k\right) e^{\alpha(z_{i+1}^k - y)} & \text{si } y \ge z_{i+1}^k \end{cases}$$

et

$$h(k) = \begin{cases} e^{\alpha(y-z_i^k)} - e^{\alpha(y-z_{i+1}^k)} & \text{si } y < z_i^k, \\ 2 - e^{-\alpha(y-z_i^k)} - e^{-\alpha(z_{i+1}^k-y)} & \text{si } y \in [z_i^k, z_{i+1}^k), \\ e^{\alpha(z_{i+1}^k-y)} - e^{\alpha(z_i^k-y)} & \text{si } y \ge z_{i+1}^k. \end{cases}$$

Exemple vidéo

SDC / PSNR = 37.1 dB, bitrate = 420.4 kbs

SDC (1/2) / PSNR = 32.9 dB, bitrate = 210.2 kbs

MDC central / PSNR = 34.17 dB, bitrate = 412.6 kbs

MDC latéral 2 / PSNR = 32.1 dB, bitrate = 191 kbs

1 Cadre de travail

- Codage vidéo robuste
- Codage par descriptions multiples
- 2 Codage vidéo par descriptions multiples protégé par un flux auxiliaire
 - Schémas MDC temporel
 - MDC avec flux auxiliaire

3 Codage par descriptions multiples avec information adjacente

- Principe
- MDSQ avec information adjacente commune
- Décodage croisé de descriptions multiples avec information adjacente
- 4 Codage vidéo distribué robuste
- 5 Conclusion et perspectives

1 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel

- **1** 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

- **1** 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

 \hookrightarrow MCTF sur les trames WZ et codage des sous-bandes de BF

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

 \hookrightarrow MCTF sur les trames WZ et codage des sous-bandes de BF

4 Exploitation de l'information WZ au décodeur central

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

 $\, \hookrightarrow \,$ MCTF sur les trames WZ et codage des sous-bandes de BF

4 Exploitation de l'information WZ au décodeur central

 $\ \ \, \hookrightarrow \ \, \mathsf{MDSQ} \ \, \mathsf{avec} \ \, \mathsf{information} \ \, \mathsf{adjacente} \\$

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

 \hookrightarrow MCTF sur les trames WZ et codage des sous-bandes de BF

4 Exploitation de l'information WZ au décodeur central

 $\ \, \hookrightarrow \ \, \mathsf{MDSQ} \ \, \mathsf{avec} \ \, \mathsf{information} \ \, \mathsf{adjacente} \\$

5 Exploitation de la corrélation entre les descriptions

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

 \hookrightarrow MCTF sur les trames WZ et codage des sous-bandes de BF

4 Exploitation de l'information WZ au décodeur central

 $\ \, \hookrightarrow \ \, \mathsf{MDSQ} \ \, \mathsf{avec} \ \, \mathsf{information} \ \, \mathsf{adjacente} \\$

5 Exploitation de la corrélation entre les descriptions

 $\hookrightarrow\,$ Décodage turbo de descriptions avec information adjacente

- 4 nouveaux schémas de codage par descriptions multiples dans le domaine temporel
- 2 Diminution de l'effet de drift

3 Réduction de la redondance WZ

 \hookrightarrow MCTF sur les trames WZ et codage des sous-bandes de BF

4 Exploitation de l'information WZ au décodeur central

 $\ \, \hookrightarrow \ \, \mathsf{MDSQ} \ \, \mathsf{avec} \ \, \mathsf{information} \ \, \mathsf{adjacente} \\$

5 Exploitation de la corrélation entre les descriptions

 \hookrightarrow Décodage turbo de descriptions avec information adjacente

 Validation de la MDSQ avec information adjacente dans un codeur vidéo

Comparaison globale

Foreman, QCIF, 15 Hz

Schémas MCTF plus performant aux décodeurs central et latéraux

Comparaison globale

Foreman, QCIF, 15 Hz

- Schémas MCTF plus performant aux décodeurs central et latéraux
- Stabilité du PSNR assurée aux décodeurs latéraux des schémas DVC

Comparaison globale

Foreman, QCIF, 15 Hz

- Schémas MCTF plus performant aux décodeurs central et latéraux
- Stabilité du PSNR assurée aux décodeurs latéraux des schémas DVC
- Différence de complexité

Construction d'un schéma combinant les avantages des deux techniques :

- Construction d'un schéma combinant les avantages des deux techniques :
 - Performance RD des schémas MCTF

- Construction d'un schéma combinant les avantages des deux techniques :
 - Performance RD des schémas MCTF
 - Exploitation systématique de l'information WZ

- Construction d'un schéma combinant les avantages des deux techniques :
 - Performance RD des schémas MCTF
 - Exploitation systématique de l'information WZ
 - Stabilité de la qualité en latéral

- Construction d'un schéma combinant les avantages des deux techniques :
 - Performance RD des schémas MCTF
 - Exploitation systématique de l'information WZ
 - Stabilité de la qualité en latéral
 - $\, \hookrightarrow \,$ Solution basée sur la MDSQ avec IA dans des codeurs hybrides

- Construction d'un schéma combinant les avantages des deux techniques :
 - Performance RD des schémas MCTF
 - Exploitation systématique de l'information WZ
 - Stabilité de la qualité en latéral
 - $\, \hookrightarrow \,$ Solution basée sur la MDSQ avec IA dans des codeurs hybrides
- Tests dans un environnement bruité et comparaison avec un codeur conventionnel protégé par FEC (Codes de Reed-Solomon, ...)

MERCI DE VOTRE ATTENTION

QUESTIONS?

Influence de la MDSQ sur EBCOT

F1G. 2.10 – Comparaison des distributions issues des quantifications scalaire et MDUSQ (diagonale d = 2, $M_I = M_J = 32$) d'une distribution laplacienne de paramètre $\lambda = 1$.

FIG. 2.11 – Comparaison des distributions issues des quantifications scalaire et MDUSQ (diagonale d = 4, $M_I = M_J = 32$) d'une distribution laplacienne de paramètre $\lambda = 1$.

Schéma MDC 3-bandes

1 niveau de décomposition :

Séquence d'origine	0	1	2	3	4	5	6	7	8
Description 1	h_1^{1-}	l_1^1	h_1^{1+}		h_3^{1-}	l_3^1	h_3^{1+}		
Description 2			h_2^{2-}	l_2^2	h_2^{2+}		h_4^{2-}	l_4^2	h_4^{2+}

Schéma MDC 3-bandes

1 niveau de décomposition :

2 niveaux de décomposition :

Trames clé - Décodeur central

Trames clé - Décodeurs latéraux

Résultats codage vidéo distribué robuste

Trames WZ - Décodeur central

Trames WZ - Décodeurs latéraux

Résultats codage vidéo distribué robuste

Résultats codage vidéo distribué robuste avec décodage croisé

Trames WZ - Turbo codes

Trames WZ - Codes LDPC

 Réduction de débit obtenue grâce au décodage croisé au décodeur central (532 kbs pour les trames clé)

Schémas MCTF

Décodeur latéral 1

Schémas MCTF

Décodeur latéral 1

Décodeur latéral 1

Décodeur latéral 1

Décodeur latéral 1

Décodeur latéral 1

Décodeur latéral 1

